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SUNSET OVER BROWNISTAN

by

Erhan qINLAR

Abstract

Consider a Brownian motion with a downward drift of rate a. Its maximum over all time

has the exponential distribution with parameter 2a. Our aim is to study this maximum as a sto-

chastic process indexed by a. That process is related to the convex majorant of the standard

Brownian motion and, through the lattcr, to a Poisson random measure. This connection is

exploited to obtain various distributional results. The results are of interest in queueing theory.
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considered by NEWELL [4] and by COFFMAN, KADOTA, and SHEPP [2], the latter viewing

the mode! as that of storage allocation in computer memory.
S

Let Q, (n) be the random variable that is 0 or 1 according as the stall n is empty or occupied

at time t. The random vector Qr = (Q,(1), Q, (2), ...) is the state of the system at time t. The pro-

cess ., Q,(n); t 0) is the queue size process in an M!MIoo system; it is regenerative, and 0 is

a regeneration state for it. It follows that the vector (0, 0, ...) is a regeneration state for

(Q,; t 0> ] and that the latter has an equilibrium distribution. Let Q be a random vector (of

zeros and ones) whose law is that equilibrium distribution-

The distribution of D Q (n) is Poisson with mean X. The distribution of Yf" Q (n) is the

equilibrium distribution of the queue size process in the M/M/m/m system with arrival rate X and

service rate 1; thus, that distribution is the conditional distribution of D Q (n) given that

Q (n) N m. Other than these facts and a few conclusions that can be drawn from them by ele-

mentary probabilistic considerations, there is not much known about the distribution of Q.

For a > 0, let X1 4 Y;.(a,t) be the number of empty stalls at time r among those labeled

with n < X.- a.3 -. ALDOUS [1] has shown that the process (YX(a ,t); a > 0, t > 0) converges

weakly, as X -4 -, to a process (Y(a ,t); a > 0, t 0), which he identified and showed that, in

the limit as t -- **, converges weakly to the process

Y(a) = n~O(B, - as), a >0,

where B is the standard Brownian motion. He calls (Y(a); a > 0) the exponential process, after

the well-known fact that Y(a) has the exponential distribution with mean 1/a for each a.

Our main contribution is to supply the probability law of Y in simpler terms. For this pur-

pose we choose to work with

= (B,-at), aI>N

and let D, be the last time t at which B, - at touches its zenith Z., that is,

4O
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(1.2) D, = supt : Bt-at=Za), a >0.

It turns out that Da is the left-derivative of Z at a and, thus, is related to the density of empty

stalls in the parking lot, in equilibrium, around X - a X314 for large X.

The next section contains a few simple geometric observations. First we relate the process

(D, Z) to the convex majorant of the Brownian motion B. Using the hard results of GROENE-

BOOM [3] and PITMAN [5] about the latter, we are able to express D and Z in terms of a Pois-

son random measure on (0,*) x (0,**). It follows, in particular, that D has non-stationary

independent increments, and that (D ,Z) is a non-homogeneous Markov process.

The process a -4 Z, is continuous, concave, and decreases from its limit +- at a = 0+ to its

limit 0 at -,. Therefore, its "hitting time" process

(1.3) A, = inf(a : Z,, <z}, z >0,

is the functional inverse of Z. It turns out that the process A has the same probability law as Z.

This observation is also put in the next section.

The last section is devoted to computational issues. We compute the joint distribution of

D. and Za and also the transition function of the Markov process (D ,Z).

V

I
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2. ZENITH PROCESS

The problem with the definitio;, (1.1) of Z, is that it suggests re-drawing the pat,

t -- B, - at if we wish to vary a. The following observation circumvents the problem:

(2.1) Z, = inf{x>O:x+at>B, forall tO).

Obviously, this is a re-wording of (1.1). but the mental picture it suggests is much more con-

venient for manipulating a: the line t -4 Z, + at is the infimum of all lines of slope a that never

touch B. This picture is drawn in Figure 1 below.

1z C!

I I

AcL

FIGURE 1



-5-

Let C denote the convex majorant of B, that is, the minimal convex path that dominates B

(see Figure 1 again). Note that Z, and Da are determined by C: the linc t --- Z,, + at is the

infimum of all lines of slope a that never touch C, and Da is the last time at which that line

touches C. In fact, for fixed a > 0, Da is almost surely the only time t with C, = Za + at.

It is known (see GROENEBOOM [3] for instance) that C is continuous and piecewise

linear. The countable collection of its vertices has, almost surely, only one accumulation point, -

namely (0,0). Fix an a > 0; note that (D,,Z, + aD.) is a vertex; let To, T1 .... be the lengths of

successive intervals of linearity going to the right from Da; let T-1, T-2,... be those to the left;

and let Si be the slope of C over the interval whose length is denoted by Ti. The following major

result was obtained by GROENEBOOM [3]; a simpler proof using the excursions of B may be

found in PITMAN [5].

(2.2) THEOREM. The pairs (Si, Ti), i E Z, form a Poisson random measure N on

(0,,o) x (0,-) whose mean measure is

(2.3) v(ds,dt) = ds y,(dt),
S

where ys is the gamma distribution with shape index 1/2 and scale parameter s2,12 (the

corresponding mean is I/s 2).

The probability law of a Poisson random measure is determined by its mean measure.

Thus, the following specifies the probability law of (D, Z). For computational purposes, the

representations given here for D. and Z, are the key starting points.

(2.4) PROPOSITION. For each a > 0,

(2.5) Da = N(ds, dt) t ,
[a ,o *N (,a)

(2.6) Z°= Ds ds = ([(0~ N (ds ,dt) ()-a

(s -a~t



The process D has non-stationary independent increments. The process (D, Z) is a temporally

non-homogeneous Markov process.

PROOF. First note that (see Figure 1)

D = Ti la,-)(Si),

Z. + a D. = B (D.) = STi lI,.) (Si).

S

Expressed in terms of the Poisson random measure N, these become (2.5) and (2.6). The ,:emain-

ing statements are immediate from the independence of the restrictions of N to disjoint Borel

sets.

Figure 2 below shows the qualitative features of D: it is piecewise constant, left-

continuous, and decreases from its limit +0 at a = 0+ to its limit 0 at +. It follows from (2.6)

that Z is continuous, concave, piecewise linear, and decreases from its limit +0 at a =0+ to 0 at

0..

-5
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It was noted by ALDOUS [I] that, for each c > 0, the process (cD,),, cZc)a>c has thc

same probability law as (D, Z). This can be seen from the preceding characterization:

a --, c 2Dc, jumps at the points Si/c by the amounts c2Ti; the pairs (Si/c, c2Ti) form a Poisson

random measure that has the same mean measure as N; hence, a -) c 2D,, has the same law as

D.

We end this section with an observation on the process

(2.7) A, = inf {a : Za < z), z >0.

Obviously, z -+ A is the functional inverse of the one-to-one mapping a -4 Z. of (0,oc) onto

(0,-). It follows that the qualitative picture of A is exactly that of Z. In particular, A is piece-

wise linear and

(2.8) D2 = ir A+- 2  - I , Z >0.
E;'d ED (A,)

The process L5 is piecewise constant, right-continuous, decreasing.

(2.9) PROPOSITION. The process (L5, A) has the same probability law as the process (D, Z).

In particular, the collection {Z(S,); i E Z) has the same law as the collection (Si; i r Z); they

form Poisson random measures on (0,-) with mean measure ds Is.

PROOF. We put (2.7) and (2.1) together Pnd manipulate:

A, = inf a: inf{x : x+at >Bt for all t) < z)

= inf(a: z + at > B, for all t)

= iLf (a: a + zu > u B1  for all u).

This shows that A is the zenith process associated with the process (uB j ; u > 0), just as Z is



the zenith process associated with B. Since (ufi is a standard Brownian mot~on like B, it fol-

lows that A has the same probabilty ]a%; as 7. This proves the first statement, since 6) is th.-

derivative of -A arnd D is the derivative of -Z.

The points Si are the jump locations of D, and the points Z(S1 ) are those of DS. This provcs

the second statement.

1%
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3. ENTRANCE LAW AND TRANSITION FUJNCTION

We derive the distribution of the random variable (D,, Za) and the transition function of the

process (DZ). The computations rest on the characterization given by Proposition (2.4) and on

the well-known formula for the Laplace functional of the Poisson random measure N with mean

measure v:

(3.1) E exp -JfN(d-x) f(x) = exp -Jfv(dx) (Il-ef~)

for every positive Borel function f nn (0,ov) x (0,-c).

(3.2) PROPOSITION. For each a > 0,

(3.3) E exp (-pD,, - qZa) =2a, ,q 0
a +q +N a2 +2p

(3.4) P[Da E dt, Za c- dz)=dtdz 2az e z +aiY2 :>0, Z>0.

In particular,

(3.5) P[(Z, E dz) =dz 2ae -z , P(D,2 E dt d e-

PROOF. Fix a > 0, p 0, q 0. In view of (2.5) adu (2.6)

pD. + qZ. N (ds,dt) (pt + q(s -a)t).

Using (3.1) and the form of the mean measure v given by (2.3), the Laplace transform (3.3) is A

obtained via elementary calculus. To invert the Laplace transform, first write it as6



i
p-fsME~U"R iUV~P X(1~ 9 ~ 3 3 VY- .- D .- ~'-.- ..

dz e-qz 2ae -- e - I a 2 p

and then recall that e r 0, is the Laplace transform of Hz, the first time a standard ,j.

Brownian motion hits the level z, that is,

e 2-z = id z e - z2J
el2 t e . a , t

The rest is trivial.

(3.6) REMARK. Although (3.4) is explicit and shades of exponential and stable distributions

can be felt, it does not seem well-suited for probabilistic thinking. The following representation

is better, especially for Monte-Carlo methods. For a > 0,

a 2 Da = X (1- 'U-) 2 , aZa = X ,T7 (1-'[,1,

where X and U are independent, U has the uniform distribution on (0,1), and X has the gamma

distribution with shape index 3/2 and scale parameter 1/2. -.

The following specifies the joint Laplace transform of any number of increments of Z (upon

taking f =p IA, +...+P, IA, with A ..... A, disjoint intervals).

(3.7) PROPOSITION. For any positive Borel function f on (0,o-),

E exp f(a) dZ = exp - ds ( s

where f(s) is the Lebesgue integral off over (0,s). *.

r , t' -'- " .. '., . ' .. , ," ,.." , 4",-., ' ,t' . ,- . .. .- '.. ,,--€ .,, , .. # ,. , .. , ,. -.. , -. , . a, ... .,,- -. j,. . .. - , ms .'
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PROOF. Note that

f f (a)Z - f (a) D,, da N- N(ds,dr) f (S)f

and use (3.1).

As mentioned in Proposition (2.4), the process D has non-stationary independent incre-

ments, and the process (D ,Z) is a non-homogeneous parameter Markov process. Let

(3.8) Pab(tX ; du,dv) = P(Db - du,Zb E dy IDa =t,Za =X} S

for 0 < b < a, 0 < I < u, 0 < x < y (in our zeal to deal with positive random variables, we

choose to work with the parameters in decreasing order). In view of (2.5) and (2.6),

(3.9) P, (t.v ; du,dy) = P (t + U c du , x + (a - b)t + Y E dy)

where 0

(3.10) U = L N(ds,dt)t Y = b N(ds,dt) (s -b)t

The joint Laplace transform of U and Y can be obtained from (3.1) as in the first step of the

proof of (3.2):

(3.11) E e-u-qY - b . a+q + a2-+ 2p + 2(a -b)q
a b+q+ + b2+2p

b~ a-hi. ____._-

_b + a -b I. 2b0,.

a a - b+q+ b 2+2p

+ a-b . 1 2b ". I ( c + ) dc
a " b+q+ b+2p +q +2p -2bq -q

Inverting this is tedious but manageable. It yields the following for the distribution &P of the pair
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(U,Y'):

(3.12) = + )L)(+Xb++Xb* I.bb O)

where the asterisque denotes convolution, 8, is the Dirac measure at x, kb is the distribution of

(Dt,,Zb) specified by (3.4), and

(3.13)) dr 5 (ab)I (y), t >0, y >0 ) =,A

Putting the distribution c-P of (U, Y) into (3.9) yields an explicit expression for the transition

function Pb. As a by-product, we have the joint distribution of

U = Db - Da , Y = Z - Z, - (b -a)D,.

Noting that Da is independent of (U ,Y), one can obtain the distribution of (Db -D, , Zb -Z")

among other things.

However, it is clear that such results are of limited use because of their complexity.

Overall, the computational complexity is caused by a confluence of two incompatible operations,

addition and multiplication: look at the form (2.3) of the mean measure v; the Haar measure ds Is

indicates that the natural group operation on the jump points Si is multiplication, whereas the

jump amounts Ti are additive.

Of course, it is easy to transform the Poisson random measure N into one with a nicer inten-

sity: define f to be the mapping (s,t) -- (log s, s 21); then the image of N under f is the Pois-

son random measure N = Nf -1 on ( x-0,00) × (0,**) with mean measure du )(dv) where y is the

gamma distribution with shape and scale parameters equal to 112. But, then, expressions for D.

and Z, in terms of t have to undo the transformation, and there is no gain at the end. Using

p = log a to index the processes involved (and working with Z. = Z (e )) does not help either.
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* On the other hand. it is easy to describe the construction of the path of (DZ) over the inter-

val (O~a ]. This may bc- useful for Montc-Carlo purposes.

First, we observe that the conditional distribution of Sj+1 given (Si, Si,...) is the uniform

distribution on (045). Thus, to construct (DZ) over (O,a]), we start with U and X described in

Remark (3.6) and generate D, and Z,. Then, we let U 1, U 2,... be iA d. nform on (0,1), let

X 1,X 2,... be iLi.d. Gaussian with mean 0 and variance 1, and set

(3.14) S,,=a . S, =aU IU 2 .. Uj, T,=X), i1 .

With these, define

(3.15) D (S.) =Da, D (Sj)=D (S,-1) + T, i 1,

Then, (Db).4 ,,, is the left-continuous piecewise constant path whose value at Si is V (5,), and

(Z),.,is the continuous piecewise linear path whose value at Si is Z(SD). Incidentally,

(Si), (Si, D (Si)), (Si, D (Si), Z (Si)) are all Markov chains.
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